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On the Kinematics of Finite Strain Plasticity
by
M. C. Boyce, G. G. Weber, D. M. Parks
Massachusetts Institute of Technology
June, 1988

Abstract

In this paper, the representation of the kinematics of snelastic flow problems snvoly-
ing finste strains and rotations is discussed. The concept of multiplicatively decompos-
ing the deformation gradient into elastic and plastic components ss utilized, where the
plastic deformation gradient represents a stress-free, relazed configuration. Here, it is
demonstrated that the choice of relazed configuration is not essential in the problem
solution. Therefore, the kinematic decomposstion of elastic-plastic deformation may be
chosen to best analyze the specific material model of concern. This 18 demonstrated by
analyzing two specific materials, the planar single crystal and the glassy polymer, using
various kinematic representations.

1 Introduction

The representation of inelastic material behavior under finite strains and rotations has
been the subject of much discussion in the recent plasticity literature [FARDSHISHEH
AND ONAT (1972), ONAT (1982), LORET (1983), DAFALIAS (1984, 1985), ANAND
(1985), AGAH-TEHRANI, ET AL. (1987)]. Finite strain formulations generally be-
gin with a description of the deformed body. This may be given by the deformation
gradient, F = xx where X represents the reference position of a material point, x
represents the current position, and ¥/ is the gradient. The multiplicative decomposi-
tion of the deformation gradient into elastic and plastic components was first proposed
by LEE (1969), thereby introducing the concept of a relaxed, intermediate configuration
represented by the plastic deformation gradient. Recently, the physical significance of
such an intermediate configuration has been debated. HILL AND RICE (1972), ASARO
(1983), HAVNER (1982) have proposed a convenient framework for the representation
of single crystal plasticity where the rotation of the crystal lattice is perceived to be an
elastic deformation. The plastic deformation gradient represents the relaxed configu-
ration such that the crystal is stress-free and the lattice is in its reference orientation.
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LORET (1983) and ANAND (1985) have extended this basic framework for the single
crystal to polycrystalline materials by the utilization of the concept of Mandel director
vectors to monitor material orientation and the application of representation theorems.
Here, the relaxed configuration represents the configuration obtained by elastically un-
loading such that the director vectors are in their reference orientation. In this case,
one faces the difficulty of assigning a set of director vectors to each material element,
whereas, for the single crystal, the vectors are naturally defined by the lattice. LEE
(1969) and FARDSHISHEH AND ONAT (1972) pointed out that a unique relaxed config-
uration can be obtained by elastically unloading to a stress free state without rotation,
in the polar decomposition sense. This second form of decomposition has the advan-
tage of being quite general, but it does not explicitly include the orientation effects
that occur in crystalline materials and which are included in the framework of the first
decomposition, where the relaxed configuration is determined by the material orienta-
tion. However, ONAT (1982) has theoretically shown that the second representation
can accomodate the internal state and orientation of a material element by the up-
dating of appropriate scalar and tensor state variables, thereby bypassing the need for
director vectors.

In this paper, it is demonstrated that the problem of the single crystal, which has
been examined utilizing the first decomposition [PIERCE, ASARO, AND NEEDLEMAN
(1983)], can also be examined utilizing the second decomposition together with the
monitoring of the orientation of state with tensor state variables as suggested by Onat.
The representation of the inelastic deformation of glassy polymers is also examined. In
this analysis, two separate but unique kinematical decompositions and the constitutive
model proposed in PARKS, ARGON, AND BAGEPALLI (1984) and BOYCE, PARKS,
AND ARGON (1988) are employed. These examples of the single crystal and the glassy
polymer utilising a variety of kinematic representations demonstrate that a particular
choice of the relaxed configuration is not essential for the problem solution. However,
choosing a convenient relaxed configuration, specific to the material of concern, can
simplify the solution process as well as provide a physical interpretation of the deform-
ing solid. As will be shown below, the “best” choice of kinematic representation will
differ depending on the material constitutive model.
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2 Kinematics of the Single Crystal

The basic kinematics of the representation of inelastic behavior under finite strains
and rotations for a single crystal are presented. In this section, two “elastic”-“plastic”
multiplicative decompositions of the deformation gradient will be discussed. The first
representation (referred to as R-I) obtains the relaxed configuration by elastically un-
loading to a stress free state while the crystal lattice reorients itself with its initial
reference configuration. In R-I, the relaxed configuration is, in effect, prescribed by
constitutive constraints on the plastic spin. The second representation (R-II) obtains
a relaxed configuration by elastically unloading to a stress free state without any rota-
tion. This requires the “elastic” deformation gradient to be symmetric, i.e. a stretch
tensor. The spin of the relaxed configuration of R-II will be shown to be algebraically
prescribed due to the symmetry restriction on its “elastic” deformation gradient. These
representations are discussed in detail below for the specific case of the single crystal.
Terms which are specific to R-Iwill be subscripted I; terms which are specific to the R-II
will be subscripted II. Terms which are common to both, such as the total deformation
gradient, F, and the velocity gradient, L, will not be subscripted.

Some basic kinematic definitions and terminology are now given. As discussed
in the introduction, a material point in its original undeformed configuration will be
represented by X. The same material point in the deformed configuration will be
represented by x. The deformed body may be described by its deformation gradient,
F, which is given by:

F = Uxx. (1)

The corresponding rate kinematics begin with the velocity gradient, L, which is given
by:

L=y,v=FF'=D+W; (2)

where D, the rate of deformation, is the symmetric part of L; and W, the spin, is the
skew part of L.

2.1 Basic Kinematics of Representation I

The kinematics which are specific to Representation I are now given, beginning with
the multiplicative decomposition of the deformation gradient{ ASARO (1983)):
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F = F;F; (3)
F; = F{FJ; (4)

where F¥ is the deformation gradient due to plastic slip; FF is the residual rotation
of the lattice; and F{ is the elastic deformation gradient. In other terms, the gradient
F} accounts for the stretching and rotation of the lattice, while F} accounts for plastic
shearing on the crystal slip planes of fixed (reference) orientation.

The rate kinematics may also be decomposed into “elastic” and “plastic” com-
ponents. This is done by substituting the decomposition given in equation (3) into
equation (2), from which we obtain:

L = FiF;™ + FiF{F;'F; ) s)
L} = FjFiF}'F;! = D} + W;
where LY is the velocity gradient of the relaxed configuration convected to the deformed
configuration, F; D% and W% are the rate of plastic deformation and the plastic spin,
respectively. These last two terms, D} and W4, mua! both be constitutively prescribed

in this formulation, which is precisely what is done immediately below for the case of
the single crystal.

Constitutive Law for D} and W}

A crystal slip system may be defined by the dyadic 8* ® m®*, where the vector 8% lies
along the a slip plane and the vector m? is perpendicular to this slip plane. The velocity
gradient in the relazed configuration of representation I is given by L} = FF}™!. This
is constitutively obtained by the summation of the rate of plastic straining, 4%, of each
slip system (s* @ m®):

L} =Y 4's*®m°. (6)

The plastic velocity gradient sn the loaded configuration is obtained by convecting the
slip system to this configuration:

.oa ® moa = F;(.a ® ma)F;-l; (7)
resulting in the following expression for L} of the loaded state:

L7 =) 4" ®m"™. | . (8)
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The rate of plastic deformation and the plastic spin in the loaded and unloaded configu-
rations may be obtained by first decomposing the plastic slip direction tensors s* ® m®
and s'* ® m*® into their symmetric and antisymmetric parts, which we define by:

¢ = ie"em® + m @)

A* = %(s“@m" - m®*Q®s%); (9)
S* = i(s“’@m“’ + m'* ®s8*?);

A® = ;(s*®m*™ - m'*®s8™);

giving:

D} = X, ¥°S%

W) = T, 4°A%

l-)? = Ea 428; (10)

WP = T, 4%A°.

The rates D7 and W¥ have now been constitutively prescribed in terms of the plastic
strain rates of the individual slip systems. Later in this paper, a specific problem con-
sidering a “planar” single crystal with two slip systems and a viscoplastic constitutive
law for 4* will be presented. For the present, we can see that this first representation
accounts for the material and lattice deformation of the crystal.

2.2 Basic Kinematics of Representation II

The kinematics specific to Representation II will now be given. The multiplicative
decomposition of RII is given by:

F= F;,F;,; (11)
Fil =Fip (12)

where Ff; is the symmetric elastic deformation gradient (an elastic stretch tensor);
and F7, is the deformation gradient of the relaxed configuration obtained by elastically
unloading without rotation to a stress free state. In comparison with F} which describes
the plastic shearing of the material, F}, describes the plastic shearing as well as any
(residual or elastic) lattice rotations.

The velocity gradient is decomposed wvia incorporation of equation (11) into equation
(2), giving:




L = Fy;Fii' + FyFyFir Fir';
Ly =FFy" =D} + Wi

(13)

where L}, is the velocity gradient of the relazed configuration of R-II, F};; DY, is the rate
of deformation of the relaxed configuration which must be constitutively prescribed;
and WY, is the spin of the relaxed configuration. The spin, W%, is algebraically
prescribed due to the symmetry restriction on F4;. This is shown immediately below:

Fj; = (D + W)Ff; - F},(D}; + Why),

and,

Fi = (F)T =F}(D - W) — (D}, - W},)Fi; (14)

or,

(D + Dj,)F{; — Fi;(D + D};) = F3 (W}, — W) + (W}, - W)Fip;

therefore, W}, is algebraically obtained to be:
Wi =W - Wy (D +Djl; (15)

where W, is a fourth order tensor with components of order elastic strain ONAT (1987)
mapping symmetric second order tensors to skew tensors. Therefore, W7, must not be
constitutively prescribed.

Thus far, in the context of the second representation, no explicit provision has been
made for monitoring the orientation of the crystal lattice. Onat has shown theoretically
that R-II can accommodate the internal state and orientation of a material element by
the updating of an appropriate set of irreducible even rank tensor state variables ONAT
(1982). Here, we will carry out this proposal for the problem of the single crystal.

In R-II, the deformation gradient of the relaxed configuration contains both the
material and lattice rotations at a material point. Therefore, for the case of the single
crystal, F}; may be decomposed into the product of lattice rotation R” and plastic
slip, Fr:

F!, = RFFYr, (16)

Here, F*? describes the deformation due to shearing on slip planes in the reference
orientation and is equivalent to F} of R-IL The crystal slip system in the relaxed con-
figuration is given by:

sf; ®m{; = Rs* ® R‘m?; (17)




where 8° and m? describe the initial directions of each slip plane and its normal. The

slip system may be further decomposed into symmetric and skew partas:

1
Sty = 5['71 ® mf; + mj; ® sfy]; (18)
a 1 x a a a
A= E[‘u ® mj, — mf; @ 7). (19)

The tensors S, and A, are the state variables needed in R-II to appropriately monitor
the lattice orientation. It is emphasized that S§; and A{, provide an irreducible set
of even ranked tensors which monitor the lattice, where Sf; is a symmetric traceless
2nd order tensor and Af; is a 2nd order skew tensor. The rate of change of these state
variables is found to be given by:

§2, = [RLRE)T] S3;, + S§ [RE(REH)TIT; (20)
Ay = [RERYNT] Ay + A5 [RERH)TT (21)

where RE(RE)T is the lattice spin.
The velocity gradient of the relaxed configuration II, L7;, may be expanded, using
equation (16), as:

L}, = FFi' = RERE)T + REFOP(F9) - (RY)T, (22)

where we know the velocity gradient due to plastic slipping is constitutively prescribed
by the rate of shearing on the slip systems. Therefore, using (22) and (18, 19), the rate
of deformation and the spin of relaxed configuration II, can be expressed as:

D} =) 4SSt (23)
and
Wi =RYRY)T + 3 4°AfL. (24)

Since W7, is algebraically defined via equation (15), we obtain an expression for the
lattice spin from equation (24):

af = RE(RY)T = Wi - 3 4°Af (25)
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Equations (20), (21), and (25) may then be used to update the state. The state
variables Sy and Apy may be updated via an incremental orthcgonal transformation,
Q, corresponding to (3£ At, where the corotational rates of Sy and Ay are given by:

§2,° = 82, - Otse, + s30l = o, (26)
A9 = A - QFAL + AQQE =0, (27)

and the “intermediate” rotation, Q, must therefore satisfy:

Q=10.Q, (28)

Q(t) =L (29)
The state variables S§; and A{; are then updated via:

(STr)e+ar = Qerae(ST)eQFr aes (30)

(Afr)srar = Qerar (AT QF A (31)

The preceding equations are easier to visualize if we simplify to the case of no elastic
stretching. In this case, the expressions in terms of the first representation, where F}
is now simply a rotation R*, become:

F = R'F;
L =R'RT + R°FIF; 'R'T; (32)
D = R°'D}R°T,; A
W =R'R'T + R°*W/R"T.
The expressions in terms of the second representation, where F§; = I, become:
F=F};
L =L};
D = D, = £, 4815 (33)

For completeness, the kinematic relationship between representations I and II is
now given. We first pictorially examine a body as it goes from its original undeformed
configuration to a deformed éonﬁguration as shown in Figuré 1. Here, the “relaxed”
states as defined by F}; and F are also depicted. Relaxed configuration I is a stress free




state containing no lattice deformation or changes in orientation. Relaxed configuration
II is the stress free state which contains any changes in lattice orientation.

Once again, we examine the elastic-plastic decomposition of the deformation gra-
dient as implemented in R-I, F = F}F}. The lattice deformation gradient, Fj, may
be broken down into its left stretch and rotation tensors via the polar decomposition
theorem to give:

F;=V'R%; (34)
F = V'R'F}; (35)
where V* describes the elastic stretch of the material. The decomposition F = F{,;F%,,

where F{; is a symmetric stretch tensor, yields a unique F§;. Therefore, since both V*
and F§; describe the elastic stretch incurred by the solid, we must conclude that:

V' = F;I' (36)

In other words, if we elastically unload to a stress-free configuration via F*~! = F{7’,
then F$, is unique. Therefore, is we elastically unload to a stress-free state via V*~!, it
must be the same stress-free state described by F};. The rotation matrix R*7 retains
an unloaded stress-free configuration and simply rotates the lattice to its appropriate
stress-free configuration which would be its initial undeformed configuration. Therefore,
the following relation is obtained:

Fi; =R'Fj; (37)
or, alternatively,
Fj =R TF}; (38)

where R’ is the rotation tensor which defines the lattice orientation. Therefore, it is
clear that R* and R are identical tensors. The relationship between the rate quantities
of R-I and R-II is also established:

L}, = O° + REDIRET, (39)
W, = 0f + REWIRST; (40)
D}, = RIDJRE; (41)




A physical interpretation of the above equation is that the RELERET rotates the ve-
locity grauient of the R-I unloaded configuration into the R-II unloaded configuration.
The (2 accounts for the rate of this rotation and is the spin of the lattice. In other
words, R’ is effectively a time-dependent observer transformation relating two different
elastically unloaded configurations.

2.3 Example Problem: Planar Single Crystal

The problem of the planar single crystal with two shear slip systems and no elastic
stretching is now examined. This problem has been analyzed by PIERCE, ASARO, AND
NEEDLEMAN (1983). For completeness and for comparative purposes, their solution
will be repeated here. A solution for this same problem using the second representation
will also be presented.

We begin with some definitions of basic parameters to be used in the problem as
illustrated in Figure 2. The primary and conjugate slip systems are defined by the
vector pairs (s”,m?) and (s°,m°), respectively. The position of the primary system is
given by the angle ¢ clockwise from the axis of imposed tensile deformation, e;. The
position of the conjugate system is given by the angle ¢ counterclockwise from the axis
of imposed tensile deformation, e;. Initial conditions on these angles were taken to be:
#(0) = 40° and ¥(0) = 20°. The angle J in the figure describes the orientation of the
lattice with initial condition of 3(0) = 0. Therefore, the lattice orientation tensor R*
is found to be:

. cosf —sin

R = [ a:"ng coag ) (42)
The rate of plastic shear straining on the primary and conjugate slip systems is given
by 4 and 4*, respectively. The visco-plastic constitutive law for these 4® is given by
the power-law relation:

X ] Y. '. - .

7 =a (’—‘) ; (43)
where 4 is a parameter such that 4 = 4* when r* = ¢g%; r® is the resolved shear
stress on that slip system; g* represents the internal structure of the material and may
evolve with strain hardening, whereupon the g* become internal state variables which
monitor the hardness of each slip system; and m indicates the rate sensitivity of the
material. The internal structure is taken to evolve according to:

10




§* = hap¥; (44)
]

where h,s is a hardness slope matrix and therefore accounts for latent as well as self
strain hardening. Following PIERCE, ET AL., for this example, we take:

hpc = thp; h'cp = qhee;
hop=hi  he = h; (43)
where,
¥4 4
h = hosech? (M) ‘ (46)
Ts — T

where, for aluminum 2.8 wt.% copper alloys, hg = 8.975and 7, = 1.8rpand 1.0 < ¢ < 1.4
PIERCE, ET AL..

2.3.1 Solution Using Representation I

The relevant material law information has now been given and we now move onto the
solution of pulling this single crystal in tension along the z; axis. Since the crystal is
subjected to simple tension, points which lie along the z; axis will remain along this
axis giving:

Fe, = /\e, (47)

where ) is the stretch in this direction. Using representation I results in:

tanf = Fi3/ Fr3, (48)
and

: Fry, Fl.Fr;

— oog? 13 _ Friafias| 49

f=coh [F,:, (Fh)? | o

where F is obtained from:
F} = [*s* @ m” + 4°s° ® m°| F. (50)
These equations, together with the resolved shear stresses

? = Zain (2¢ — 26);

¢ = Sain (29 + 28); (51)
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are used to update the state of the material. The orientation of the lattice, 3, as
a function of the amount of plastic strain on the primary system was found for the
following three cases (all with ¢ = 1072sec™!): m = 50, ¢ = 1.4; m = 50, ¢ = 1.0;
m = 10, ¢ = 1.0. The results are shown in Figure 3 and were originally calculated by
PIERCE, ET AL.. We note here that § is obtained from F} by equation (48).

2.3.2 Solution Using Representation II

Kinematic representation II will now be used to analyze the “planar” single crystal,
where the lattice orientation is included as a state variable by integrating equations
(20) and (21) as suggested in section 2.2.

Since we are considering an elastically rigid single crystal, F$;, = I, and the plastic
deformation gradient is equal to the total deformation gradient:

F}, =F. (52)
Similarly, the plastic spin is equal to the total spin:

WE, = W = skew(FF~!| = skew(F5,Fir]. (53)
This spin does not account for the lattice orientation. The lattice spin is given by:

0, = (Wi — YA} - 1ALl (54)

The lattice orientation may then be updated with equations (30) and (31) with the
initial conditions:

(S87r)e=0 = %l"‘ @ m® + m” @ 87, (55)

(Afem = 38" 0 m* — m” @157, (50

Since this is a planar problem, the lattice orientation may also be found by simply
updating the angle 3, where § = f11,,. These equations together with the constitutive
laws (40 - 43) stated earlier are used to update the state of the material. The solution
for the lattice orientation, 8, as a function of the plastic strain on the primary slip
system, 4, was found for the same three cases as the earlier solution. The results are
plotted along with the earlier results in Figure 3, and with which they are identical.

12




It is important to note that the solution processes using the two different represen-
tations are very similar. However, they are operationally different in the manner in
which the lattice orientation is taken into account. The kinematics of the elastic-plastic
decomposition of the deformation gradient in representation I specifically includes the
lattice orientation. The second kinematical decomposition is more general and does not
explicitly contain the lattice orientation, which must be implicitly retained and “con-
stitutively” updated as a tensor state variable. Therefore, this representation requires
an additional tensor to properly describe the material behavior of a single crystal. In
R-I, a description of the lattice orientation is not given, i.e. knowledge of the plastic
deformation gradient is needed. However, in R-II, the complete state of the material at
any point in time is completely described by the instantaneous hardnesses of the slip
systems and the lattice orientation. In the next section, the case of the glassy polymer
is examined in the context of different kinematical decompositions.

3 Kinematics of the Glassy Polymer

Below, we will give a brief outline of the constitutive model for the large inelastic
deformation behavior of glassy polymers proposed in PARKS, ET AL. and BOYCE,
ET AL.. The reference configuration of the glassy polymer is an isotropic state of
the material which consists of randomly oriented chains (Figure 4). We assume that,
during plastic flow, these molecules deform affinely. The relaxed configuration, F?, is
obtained by elastically unloading to a stress free state, and physically indicates the
degree of permanent molecular orientation existing in the material. In general, we can
express the total deformation gradient as the product of the elastic stretch, a rotation,
and the plastic stretch:

F = V'RU". (57)

The rotation tensor R may be decomposed into the product of elastic and plastic ten-
sors, R = R'R?, where F* = V'R* = R*U*, and F? = R?U” = VPR?, via the polar
decomposition theorem. However, the “elasticity” and/or “plasticity” of the rotation
tensor is indeterminate. If R = R” and R* = I is chosen, all such rotation effects
are lumped into the affine plastic deformation response of the material. This results
in a symmetric and, therefore, unique elastic deformation gradient, F*T = F*. This
formulation is kinematic representation II discussed in section 2 above. Alternatively,

13




if R = R* and R? = [ is chosen, F* is again unique, but not symmetric. A third
alternative for rendering this factorization unique is to obtain the elastic-plastic de-
composition of the rotation tensor by imposing a constraint on the spin of the relazed
state. Indeed, this was precisely the procedure followed in representation I above for the
single crystal, where the plastic spin was constitutively prescribed, thereby generating
a particular relaxed configuration.

In the remainder of the discussion on the glassy polymer, the modelling of the
material behavior will be considered using two of the above kinematical representations:
1) a relaxed state which contains all rotations is chosen, i.e. R? = R; 2) a relaxed state
is chosen via a particular restriction on the plastic spin. The first choice, R-II, was used
in PARKS, ET AL. and BOYCE, ET AL. In this case, the plastic spin is algebraically
defined as discussed in section 2. The alternative of defining a relaxed configuration by
imposing a constraint on the plastic spin will be made clearer after further discussion
of the material model using the kinematic representation where R? = R.

3.1 Choice1l: R =R

For the case where we select R? = R, where R is defined in equation (57), and F* = FT,
it was shown earlier that the plastic spin is algebraically defined via equation (15). A
rate of plastic shape change must be constitutively prescribed for the material. We
note that D%, describes the rate of shape change of the relaxed configuration given by
the kinematics F7;. The magnitude of Df; is given by the plastic shear strain rate,
4?, and the tensor direction of DY, is specified by N = 7‘;'-'1‘", the normalized driving
stress state, T, at a material point. The driving stress state is given by:

T =T- -}F;,ﬁF;’,' . (58)

where: T is the Cauchy stress tensor given by T = 1.£*[InV*] [ANAND (1979)], L* is
the fourth order isotropic elasticity tensor, and V* is the left elastic stretch tensor; J
is the volume change given by detF{;; and B is the back stress tensor resulting from
strain hardening. The back stress is uniquely related to the inelastic distortion in the
polymer, where B is coaxial with the left plastic stretch tensor:

Fj; = VO, RY,  polar decomposition, (59)
Vi = QTA*QS, eigenvaluedecomposition, (60)
14




B = B(x2), (61)

where B; are the principal values of B defined in BOYCE, ET AL., and Af are the
principal values of A?. The coaxiality of B and V?, is a key result of the assumption
that the molecules deform affinely during plastic low. The effective equivalent shear
stress, 7, is given by:

r= [%T.' . T“]*. (62)

We point out that this is essentially a kinematic-hardening law. The plastic shear strain
rate is constitutively prescribed and may be functionally given by:

¥ = 4*(r,8,p,0), (63)

where s is the scalar athermal shear resistance of the material, which evolves with
plastic straining; p = —1trT is the pressure; and © is the absolute temperature. A
detailed expression for 4? is given in BOYCE, ET AL..

This has been a very brief description of the kinematic hardening model for the large
inelastic deformation of glassy polymers proposed in PARKS, ET AL. and BOYCE, ET
AL. The assumption of affine response of the molecular chains, which lead to the back
stress coaxiality with the plastic stretch, was instrumental in selecting the kinematic
representation of deformation. When the driving stress state is obtained, the back
stress, which is computed in the relaxed configuration, is transformed to the loaded
configuration. Therefore, alternative relaxed configurations which contain different
degrees of rotations, i.e. R? # R, should indeed result in the same material response,
providing the alternative measures of back stress thus obtained are also consistently
transformed to the loaded configuration. As stated earlier, another unique choice of
kinematic decomposition is obtained by taking R* = R and R” = I and, therefore,
F? = U”. The resulting principal values of the back stress tensor would be identical,
but the tensor would be coaxial with U? and would have to be transformed via R*
when computing the driving stress state T°. This decomposition would also sufficiently
complicate the rate kinematics so as to make it an unreasonable choice for this material.
A more reasonable alternate choice is to impose a constraint on W?, which is discussed
next.
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3.2 Choice 2: Prescribe W?

We may also define the kinematics of the glassy polymer in a manner similar to rep-
resentation I of the single crystal where the relaxed configuration, F}, was chosen via
a constraint on both the rate of plastic deformation D% and the plastic spin W%. In
that case, the constraint was constitutive. For the case of the glassy polymer, where
the molecules deform affinely, there is no obviously analogous or intuitive choice for a
“constitutive” constraint on the spin of the relaxed configuration. Therefore, we may
obtain our relaxed state represented by F? by choosing a convenient W?. Indeed, note
the “convenience” offered in R-I by the imposition of the particular constraint on the
spin of the relaxed configuration of the single crystal. The simplest possible form for
the spin of the relaxed state is chosen:

Wi, =0. (64)

In other words, a relaxed configuration which is not spinning is chosen. In general, as
in R-I, this will result in elastic and plastic deformation gradients which both contain
rotations, F = F},F};; = V‘R}, R}, UP. The rate of deformation of the relaxed
configuration is given by:

D} =4M, (65)
where,
1 _, 1
M= _ERIII.I[T - ‘jF;uBFﬁJ]R;n; (66)

where B is coaxial with the left plastic stretch of F4;;, Vi = R}, UPR},"; T =
3L*{InV*); and, therefore, M is the direction of the driving stress state in the relaxed
configuration, F};;. We note that the principal values of B are identical to those of B
given above in equation (61).

A schematic of the deforming glassy polymer is shown in Figure 5. Here, the relaxed
configuration of both representations IT and III are shown. We note that the two relaxed
configurations simply differ by a rotation, where we have:

F}, = RU?; (67)
F;n = R;"U’; - (68)
which results in:
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Fir =Ry, Fiyp. (69)
The corresponding spin of these two re ixe. -onfigurations are given by:

L}y = DYy = Fi Fhpys (70)
and

L}, = D} + Wi, = Ry, RiT; + Ry, DI R, (1)

Therefore, W%, = R$;;R¢T,. This connection between the two relaxed configurations
for the glassy polymer is analogous to that presented in section 2 for the single crystal.
A detailed proof of the independence of the solution upon the kinematic decomposition
due to the isotropic character of beth the Cauchy stress and the back stress is given in
the Appendix.

Identical results are, of course, obtained using the kinematic decomposition of rep-
resentations II and III for the glassy polymer. In particular, the analysis of the simple
shear of a glassy polymer, polymethylmethacrylate, was conducted. The functions for
A? and B and all necessary material properties are given in BOYCE, ET AL.. The
resulting shear stress-displacement curves for both R-II and R-III are shown in Figure
6. The solutions are identical.

4 Conclusion

This paper has examined the representation of the kinematics of inelastic deformation
problems involving finite strains and rotations. The independence of problem solution
on kinematic representation was demonstrated using two distinct examples. The first
example considered the planar single crystal of PIERCE, ET AL. subjected to tensile
loading. The second example analyzed the glassy polymer as constitutively modelled by
BOYCE, ET AL. subjected to simple shear loading. Both problems were solved utilizing
various representations of the kinematics. The solutions were found to be independent
of the choice of the relaxed configuration, s.e. the representation, as shown in Figures
3 and 6. The two cases discussed in this paper were examined with physically-based
constitutive models, where the tensorial representation of the resistances to deformation
in the single crystal and the glassy polymer are, in a sense, clearly understood. The
tensorial state representation of the physics of deformation is not, at this point, as
well characterized for more complex materials such as polycrystalline metals. This has
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lead to the corresponding debate over the representation of the kinematics of plastic
deformation in the presence of anisotropy and the role of the “plastic spin”.

It can be concluded that the most convenient representation for the material of con-
cern may be chosen when solving problems involving finite strain plasticity. However,
on reflection, one also wishes to acknowledge that it is of great interest to retain in-
formation on the state and orientation of the material. General representations which
monitor this information with internal state variables are highly desirable. General
representations also permit a greater freedom for improvement or expansion of existing
material models by providing a kinematic framework independent of material model
which will not require modification to accomodate material law medifications.
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Figure 1. Schematic of a deforming body depicting the “unloaded”

states as described by representations I and II.




Tensile Axis

Figure 2. Schematic of the planar single crystal containing two slip
systems. The primary and conjugate systems are depicted with respect

to the tensile load axis.
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Appendix A

In section 3 of this paper, a symmetric form for the plastic velocity gradient was
postulated. The resulting decomposition was referred to as representation III, R-JII. It
is the purpose of this appendix to show that, in general, the introduction of an arbitrary
skew-symmetric component of the plastic velocity gradient tensor does not affect the
Cauchy stress material response as long as the remaining constitutive equations are
form invariant as in the case of the glassy polymer. In the paper, such an example was
analyzed, where the “W?” which was an algebraic result of the symmetry imposed upon
F* was the “arbitrary” skew-symmetric component. The corresponding decomposition
was referred to as representation II, R-II

For the proof, we consider two constitutive initial value problems, where the only
difference is the flow rule:
Case a) The plastic velocity gradient as expressed in the relaxed configuration is taken
to be symmetric (RIII of the paper).

L}, = D*(T,B,3);

F'i'u = D*(T, B, 3)F},;;

i =g(T,B,3); (A.1)
T = L*[InUy,);

B= f(V;,,);

with the initial conditions of F%,,(0) = I, (and, therefore, B(0) = 0) and 3(0) = s.
The overlaid bar indicates that these are expressions for the description of state in the
relaxed configuration, F},,, i.e. not in the loaded configuration. Note that D?, g, L*,
and f are isotropic functions.

Case b)The plastic velocity gradient is taken to be arbitrary. (One such example was
R-II given in the body of this paper.)
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L} = D*(T,B,3) + W};
F} = [D*(T,B,3) + Wi|F};

s = g(T,B,3); (A2)
T = L*[InU});
B = £(V});

with the initial conditions of F}(0) = I, (and, therefore, ﬁ(O) = 0) and § = so. The
overlaid tilde indicates that these are expressions for the description of state in the
relaxed configuration, F§, s.e. not in the loaded configuration.

In order to prove our assertion that the system of equations in cases (a) and (b)
will lead to identical solutions, we consider a “trial” solution for the second system in
the form:

Ff = QF;u;

e (A.3)

where Q is a rotation tensor to be determined. From these relations, we obtain:
R} = R}, Q";
U; = QU QT; (A4)
Vi =Qvi,QT.

Due to the isotropic character of f and £*, the above relations yield:

In(U3) = QIn(Ut;,)QT;
B= QBQT; (A.5)
T = QTQT.
Next, differentiating F} as given in equation (A3), and then substituting in the flow
rules of cases (a) and (b), we obtain:

FIF? ™' = QQT + QD*(T,B,3)QT = D*(T,B,3) + Wi. (A.6)

Due to (A5) and the symmetry and isotropic character of D?, equation (A6) is satisfied
provided:

QQ” = Wi. (A7)
From equations (A4) and (A5), we also verify that:
(detU) 'R TR;T = (detUfy,) 'Ry, TRY,". (A.8)

Therefore, the Cauchy stress tensor T obtained by integration of one or the other
system of constitutive equations is identical.
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